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Abstract: Clostridioides difficile remains an important public health threat, globally. Since the emer-
gence of the hypervirulent strain, ribotype 027, new strains have been reported to cause C. difficile
infection (CDI) with poor health outcomes, including ribotypes 014/020, 017, 056, 106, and 078/126.
These strains differ in their geographic distribution, genetic makeup, virulence factors, and antimicro-
bial susceptibility profiles, which can affect their ability to cause disease and respond to treatment. As
such, understanding C. difficile epidemiology is increasingly important to allow for effective preven-
tion measures. Despite the heightened epidemiological surveillance of C. difficile over the past two
decades, it remains challenging to accurately estimate the burden and international epidemiological
trends given the lack of concerted global effort for surveillance, especially in low- and middle-income
countries. This review summarizes the changing epidemiology of C. difficile based on available data
within the last decade, highlights the pertinent ribotypes from a global perspective, and discusses
evolving treatments for CDI.
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1. Introduction

Clostridioides difficile is a Gram-positive, anaerobic, spore-forming bacterium that
remains an important public health threat globally [1]. C. difficile infection (CDI) accounts
for approximately 15–20% of all cases of antibiotic-associated diarrhea, ranging from mild
diarrhea to pseudomembranous colitis (PMC) [2]. The epidemiology of CDI has been
evolving over the past two decades. Most cases of CDI were previously linked to healthcare
exposure; however, recent studies have suggested an increased incidence in community-
acquired (CA)-CDI reaching up to 40% of all CDI cases [3]. Interestingly, the incidence of
multiple recurrent CDI (rCDI) has risen disproportionately to the incidence of CDI. Between
2001 and 2012, CDI increased by 46% while rCDI rose by 189% in the USA [4]. In 2020,
the overall incidence rate of CDI in the United States was 101.3 cases per 100,000 persons,
with an associated healthcare cost of $6.3 billion USD [5]. With the rising incidence of
rCDI, microbial-based therapeutics such as FMT are emerging and being recommended in
various treatment guidelines. Furthermore, the Food and Drug Administration has recently
approved two stool donor-based products, RBX2660 (Rebyiota) and SER-109 (Vowst), in
the treatment of rCDI [6]. Currently, there has been a shift towards microbial restoration
as a strategy to combat dysbiosis, the root cause of CDI; however, it remains challenging
to accurately estimate the global healthcare burden and costs associated with CDI since
epidemiologic surveillance is limited in low- and middle-income countries.
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The emergence of a more virulent strain of C. difficile has been recognized as one of
the principal drivers of the ongoing CDI epidemic. This strain is known as the polymerase
chain reaction (PCR) ribotype 027, North American pulse-field type 1 (NAP1), restriction
endonuclease analysis (REA) type B1 strain, or simply “ribotype 027”. Ribotype 027 is
associated with more severe illness which is refractory to antibiotic therapy and has a greater
risk of relapse [7–9]. The emergence of this previously uncommon and hypervirulent C.
difficile strain prompted healthcare facilities to track the incidence and undertake further
epidemiological research on C. difficile. Over the last decade, new strains have been
reported to cause CDI with worse health outcomes, such as ribotypes 014/020, 017, 056,
106, and 078/126 [10,11]. These strains differ in their genetic makeup, virulence factors,
and antimicrobial susceptibility profiles, which can affect their ability to cause disease
and respond to treatment. As such, understanding C. difficile epidemiology is increasingly
important to allow for effective prevention measures. This review aims to provide an
up-to-date overview of the epidemiology of C. difficile globally. It summarizes the changing
epidemiology of C. difficile based on available data within the last decade, highlights the
pertinent ribotypes around the world, and discusses evolving treatments for CDI.

2. The Emergence of NAP1/Ribotype 027

The epidemic ribotype 027 has not only been linked to an overall increase in inci-
dence of CDI, but also to increased disease severity and recurrence with higher mortality
rates. Starting in the early 2000s, outbreaks of CDI in North America and Europe were
associated with ribotype 027 [12]. This strain was a significant predictor of severe CDI and
mortality [7–9,13,14]. In Canada, from 2009 to 2015, ribotype 027 resulted in higher overall
death rates compared to non-NAP1 strains (19.3% vs. 12.3%) as well as higher mortality
attributable to CDI (12.2% vs. 1.4%) [13]. The increased disease severity associated with
ribotype 027 is thought to be related to mutations in the toxin regulatory gene tcdC, a single
base pair (bp) deletion at position 117, which leads to a markedly truncated repressor
protein, and further on to an 18 bp deletion at position 330–347, which is associated with
the more rapid and increased production of toxins A and B [7,15–21]. In comparison to
non-epidemic strains, the genome of the ribotype 027 epidemic strain exhibits the presence
of five extra-genetic regions. These additional regions consist of a novel phage island, a
two-component regulatory system, and transcriptional regulators [7,15–19]. The increased
production of spores has also been suggested as an explanation for the successful spread of
this ribotype in the healthcare setting [22]. Following the marked epidemiologic change in
CDI with ribotype 027, there have been a significant number of surveillance studies that
have investigated the emergence of new epidemic strains, given that new strains continue
to emerge.

Since then, molecular studies have shown two distinct lineages of ribotype 027, la-
belled FQR1 and FQR2, which have both acquired a fluoroquinolone-resistant mutation in
parallel [16]. This is due to significant selective pressure, with fluoroquinolone antibiotics
being one of the most commonly prescribed antibiotic classes in the late 20th and early 21st
centuries [23]. The FQR1 lineage has spread throughout the world, most likely originating
in the United States and spreading to Asia and Switzerland, whereas the FQR2 lineage was
associated with a more widespread distribution initially, with rapid population expansion
in the United States, Canada, and more widely throughout Europe [16]. The emergence
of this previously uncommon and hypervirulent C. difficile strain prompted healthcare
facilities to track the incidence and undertake further epidemiological research on C. difficile.

While these clonal strains are associated with increased disease severity, it is now
recognized that the strain type does not always correlate with disease severity, especially in
non-epidemic settings [24,25]. The hypervirulence of certain strains has recently become
a topic of debate. In fact, recent cross-sectional and single-center studies have shown no
association in disease severity between ribotype 027 and 078 [26,27]. Given the complexity
of the host immune response that determines disease severity, further investigations are
needed to better understand the connection between strain type and disease severity.
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3. C. difficile Epidemiology in North America

In North America, the incidence and severity of CDI have been well-documented. In
the United States, the most recent 2020 surveillance data by the Center for Disease Control
and Prevention showed an incidence of 101.3 cases per 100,000 persons, with 51.2% being
CA-CDI and 50.1% being healthcare associated (HA)-CDI [28]. The most common CA and
HA ribotypes in the United States over the past decade were ribotypes 027, 106, 014/020,
and 002 [29,30]. Notably, ribotype 027 decreased significantly among both HA and CA
isolates in the United States [30]. Other virulent strains associated with more severe disease,
including ribotypes 078 and 244, are low in prevalence in the United States [11,30,31].
Within the last decade, the estimated burden of CDI in the United States has decreased,
despite the increasing use of more sensitive nucleic acid amplification tests (NAAT) [30].

The incidence of CDI, particularly HA-CDI, appears to have reached a plateau in recent
years after increasing steadily over the previous decade [32]. Over the past decade, HA-CDI
decreased by an average of 6% annually [29]. Many studies have described the association
between fluoroquinolone use and CDIs [7,33,34]. The reduction in fluoroquinolone use is
associated with lower HA-CDI, with decreasing prevalence of epidemic strains, such as
ribotype 027, likely due to decreased selective pressures [30,35,36]. The most recent survey
shows that the prevalence of ribotype 027 is approximately 10% [37]. The decline in HA-
CDI and ribotype 027 followed a series of infection prevention programs, and the institution
of hand hygiene, contact precautions, disinfection practices, and financial reimbursement
penalties [30,36]. This further emphasizes the importance of utilizing modifiable risk factors
to minimize the occurrence of resistant C. difficile strains.

Similarly, in a Canada-wide CDI study from 2009 to 2015 by the Canadian Nosocomial
Infection Surveillance Program, the national rate of HA-CDI decreased from 5.9 to 4.3 per
10,000 patient days [38]. Over the past decade, while ribotype 027 remained the predom-
inant strain, there was a substantial decrease in its prevalence from 25% to 9.4%, along
with an increase in the proportions of other strains such as ribotype 106 and 014/020 [13].
Currently, the most prevalent CA-CDI is ribotype 106 [30]. From 2015 to 2019, the incidence
of ribotype 106 has been increasing from 7.3% to 18.1% [13]. Ribotype 106 was initially
identified in the United Kingdom in 1999, and it is now one of the most predominant strains
in North America [13,39]. Furthermore, this ribotype is associated with a greater likelihood
of rCDI [39,40]. It has an enhanced ability to produce spores, form biofilms, and persist in
hospital settings.

In recent North American surveillance studies, the antimicrobial resistance rate of C.
difficile for vancomycin ranges from 1.2 to 2.1%, with some studies suggesting an increase
in vancomycin resistance over the past decade [41–43]. All isolates were metronidazole
susceptible, with a resistance rate of 1.9–2.7% [41–43]. Fidaxomicin demonstrated the
lowest MIC of all antimicrobial agents at an MIC90 of 0.5 mg/L [41]. Despite the decline in
the prevalence of ribotype 027, its isolates continue to show increased resistance to most an-
timicrobials, including a two-fold higher MIC compared to other isolates [41]. Among rare
fidaxomicin-resistant isolates, mutations in the rpoB gene have been postulated to interfere
with the fidaxomicin binding site [44,45]. Fortunately, in an in vivo animal model, the same
rpoB-positive isolates have been demonstrated to exhibit lower cytotoxicity, attenuated
growth, poor sporulation, and decreased toxin A/B generation [44,45]. Overall, there is
heterogeneity between studies with respect to the reported resistance rates. However, inter-
preting resistance values which utilize systemic concentration breakpoints in the treatment
of luminal infections, where concentrations are exceedingly high, is a challenge.

4. C. difficile Epidemiology in Europe

In a 2022 Europe-wide survey on the incidence of CDI involving 559 hospitals per-
formed by the European Centre for Disease Prevention and Control (ECDC), the mean
incidence of CDI was 3.48 cases per 10,000 patient days [46]. The majority of cases (60.9%)
were HA-CDI, while 32.7% accounted for CA-CDI cases [46]. In general, ribotypes have
become more heterogenous, given a significant decrease in the dominant ribotype 027.
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The most common PCR ribotypes were ribotype 014 (16.8%) and ribotype 078 (7–11% of
cases) [11,46,47]. Specifically, ribotype 078 was commonly detected in regions and jurisdic-
tions where there is a high prevalence of pigs, such as in Belgium, Czechia, Ireland, and
the Netherlands [46]. Ribotype 014 and 078 are livestock-associated (LA) strains, although
these ribotypes have recently emerged as pathogens that cause increased virulence and
disease severity in humans [48]. Specifically, ribotype 078 is also more likely to be CA strain
and affect younger individuals [11]. Genome comparison studies revealed that ribotype
078, along with other clade 5 strains, is divergent from the rest of the species, separating
approximately 1.1–85 million years ago [48]. The current understanding is that ribotype 078
emerged from a non-toxigenic ancestor strain that has horizontally acquired a pathogenic
locus (PaLoc), which provided it with its virulent properties [48].

Previous reports of C. difficile in food, along with the link between ribotypes 078
and 014/020 with pig farming, suggests that the food chain may be a vector for these
ribotypes [11,49–51]. A European study noted that some C. difficile isolates have shown
a distinct pattern of genetic relationship that does not cluster within a hospital, region,
or country. This suggests that the dissemination of these C. difficile strains is not through
person-to-person transmission, but rather, transmission through other channels, such as
the food chain [30,50,51]. Although there is currently no concrete evidence supporting the
transmission of C. difficile from animals to humans, there is a growing suggestion that it
should be regarded as a zoonotic pathogen. Ongoing endeavors are being made to enhance
our comprehension of C. difficile transmission in this setting.

The hypervirulent ribotype 027 was the third most frequently reported ribotype in
Europe, with its relative prevalence decreasing compared to prior years. The highest
prevalence of ribotype 027 was found in Hungary (67.6%), Poland (63.0%), and Slovenia
(44.4%), and relatively lower proportions in all other countries (2.5%) [46]. In England and
the Netherlands, the implementation of a national ribotyping service was associated with
the control of the hypervirulent ribotype 027 strain and coincided with a marked reduction
in CDI incidence and related mortality [52]. Further, similarly to North America, the
restriction of fluoroquinolone prescriptions is thought to have contributed to a reduction in
CDI due to the decreased selection pressure of fluoroquinolone-resistant strains, including
ribotype 027 [53].

Central Europe reported high proportions (90.7%) of ribotypes similar to that of 027
within clade 2, which include ribotype 036, 198, 176, and 181 [46]. Of concern, there are
high proportions of metronidazole resistance within ribotype 027 and ribotype 027-like
strains [46]. In a recent European longitudinal surveillance on C. difficile antimicrobial
resistance, the mean MIC of metronidazole and vancomycin were 0.46 mg/L and 0.70
mg/L, respectively, with reduced metronidazole susceptibility seen in ribotype 027 and
198 [54].

5. C. difficile Epidemiology in the Rest of the World

While the incidence of HA-CDI has plateaued or declined in North America and
Europe, it seems to be rising in Australia. In 2013, the average yearly rate of CDI was
3.94 per 10,000 patient bed days and this increased to 4.05 per 10,000 patient days in 2018.
Australia also has a markedly different pool of C. difficile strains compared to other parts of
the world [55]. A recent Australian longitudinal surveillance, the C. difficile Antimicrobial
Resistance Surveillance (CDARS) study, showed that ribotype 014/020 (29.5%) was the most
prevalent strain and ribotype 126 was the most prevalent toxin-positive strain [56]. Ribotype
027 continued to be infrequent in Australia [56]. The porcine-associated ribotype 014/020
is thought to be non-hypervirulent, while ribotype 078/126 is associated with increased
severity and poor disease outcomes [51,57]. Recent surveillance studies within Australia
have shown good susceptibility of all strains to metronidazole, fidaxomicin, rifaximin,
and amoxicillin-clavulanate, with a low resistance rate to meropenem, moxifloxacin, and
vancomycin [58]. Overall, the antimicrobial resistance of C. difficile strains in Australia
remains low.
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In Asia, there are limited data on the prevalence of CDI; however, a recent metanalysis
showed a pooled estimated 5.3 episodes of CDI per 10,000 patient days [59]. Overall, there
appears to be a higher prevalence of CDI in East Asia compared to South Asia and the
Middle East [59]. Ribotyping data have identified a unique set of toxicogenic ribotypes,
including 001, 002, 010, 014, 017, 018, and 046 [60–63]. Ribotype 027 and 078, both of
which are prevalent in North America and Europe, are noted to be infrequently detected in
Asia [11,59,63]. In the Middle East, a recent large-scale cross-sectional study has revealed
that ribotypes 001, 126, and 084 were the most frequent ribotypes among CDI patients
from healthcare settings [64]. There is less data on the molecular epidemiology of CDI in
South America, although ribotypes 027, 106, 012, 046, and 014/020 are the most common
strains [65].

Ribotype 017, an A-B+ strain that is widespread in Asia, has been noted to be the
dominant ribotype in India, Thailand, Indonesia, parts of South Africa, along with up
to 48% of isolates in China [66–72]. Ribotype 017 is thought to have originated in Asia
and spread globally. Since then, ribotype 017 has been responsible for multiple outbreaks
internationally and is now emerging as a significant pathogenic strain of CDI [73]. The
significance of the A-B+ C. difficile strains have been previously under-recognized, given
the prior assumption that both TcdA and TcdB were required for a virulent phenotype [74].
After the association between C. difficile and PMC was shown, the initial belief was that
TcdA was required to cause initial damage to the intestinal mucosa before TcdB could exert
its cytotoxic effect [75]. As a result, until the early 2000s, there was a shift towards using
diagnostic studies involving rapid immunoassays for only the detection of TcdA, leading
to likely underestimation of A-B+ strains [49,76,77]. The current understanding is that
TcdB can exert its action in the absence of TcdA, and the human intestinal mucosa is 10
times more sensitive to TcdB than TcdA [73]. This emphasizes the importance of using
standardized C. difficile diagnostic methods that include both toxins. Recent studies have
shown that it is possible to ribotype C. difficile directly from fecal DNA, with sensitivity and
specificity comparable to diagnostic toxin gene qPCR and conventional DNA typing [78,79].

Despite the disease burden of C. difficile in low- and middle-income countries, epi-
demiological data assessing the burden of CDI remain relatively scarce [80,81]. Most
epidemiological studies on CDI have been reported from North America and Europe over
the past two decades, with few reports from Latin and South America, Africa, and Asia [81].
A significant effort to enhance CDI awareness and improve laboratory capacity, along with
a coordinated national effort to strengthen epidemiological tracking of CDI, is necessary in
these regions. A summary of evolving CDI epidemiology and ribotypes around the globe
can be found in Tables 1 and 2.

Table 1. A global comparison of CDI burden and epidemiology in different regions of the world.

Nation/Region Incidence of CDI Reference

United States

Incidence of 101.3 [CA (51.2) and HA (50.1)]
cases per 100,000 persons in 2020; incidence of
148.55 [CA (65.81) and HA (82.74)] cases per

100,000 persons in 2015

CDC 2020 [28]

Canada National rate of HA-CDI decreased from 5.9 to
4.3 per 10,000 patient days from 2009 to 2015 Katz et al. [38]

Europe
Mean incidence of CDI was 3.48 cases per 10,000
patient days in 2016–2017; 60.9% HA, 32.7% CA,

and 6.7 rCDI
ECDC 2022 [46]

Australia HA-CDI 3.94 per 10,000 patient bed days in 2013
and 4.05 per 10,000 patient bed days in 2018 ACSQHC 2020 [55]

Asia Pooled incidence rate at 5.3 per 10,000
patient days Collins et al. [81]
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6. Evolving CDI Treatments

Currently, there are no specific recommendations regarding treatment in accordance
with different strain characteristics. Treatments are instead tailored to the severity of
the clinical presentation. Metronidazole used to be the first line therapy for CDI. Due
to decreasing clinical response rates observed since the early 2000s, metronidazole is no
longer recommended as the first line therapy, although it is still used in clinical practice,
especially in individuals less than 65 years of age with a mild initial episode of CDI [82].
Clinical practice guidelines from the Infectious Diseases of America (IDSA) and Society for
Healthcare Epidemiology of America (SHEA) recommended treating the initial CDI episode
with either vancomycin or fidaxomicin, with both options being preferable to metronidazole
in 2017 [83]. However, newer therapeutic options, including fidaxomicin, bezlotoxumab,
fecal microbiota transplantation, and other live biotherapeutics have emerged and are
briefly reviewed below.

6.1. Fidaxomicin

Compared with vancomycin treatment, treatment of CDI with fidaxomicin is asso-
ciated with a ~50% lower rate of recurrence of CDI in non-NAP1 strains. Fidaxomicin,
a bactericidal antibiotic active against Gram-positive anaerobes, has been available and
approved by the FDA since 2011. Fidaxomicin is thought to have a lower impact on the
normal gut microbiota than oral vancomycin.

Three double-blind RCTs and one open label RCT have compared fidaxomicin and
the standard vancomycin regimens to date, with the pooled results showing a sustained
response of CDI to fidaxomicin compared to standard vancomycin, with comparable initial
clinical cure [84–87]. This makes fidaxomicin a less costly treatment strategy compared to
vancomycin for the treatment of CDI in older patients [88], although further cost-effective
studies are needed in this area [89]. Of note, the same reduction in recurrence compared
to vancomycin is not demonstrated in patients infected with ribotype 027 [12,15]. In 2021,
the IDSA and SHEA recommended the use of fidaxomicin rather than the standard course
of vancomycin as the preferred therapy for the initial episode of non-fulminant CDI [89].
There are limited data regarding the use of fidaxomicin in fulminant CDI cases since these
patients were excluded from the clinical trials [85]. Despite the clinical benefits, uptake and
implementation remain slow given resource limitations and high costs. We anticipate that
the uptake of fidaxomicin would increase with reduced cost and improved accessibility.

6.2. Antibody-Mediated Therapy

In addition to antibiotics, the use of monoclonal antibodies has emerged as a novel
adjunctive therapy for the treatment and prevention of CDI recurrence. In 2016, the FDA
approved bezlotoxumab, a monoclonal antibody that binds to C. difficile toxin B, for the
treatment of patients with a high risk of CDI recurrence. Two double-blind RCTs found
that the rate of recurrence of CDI with bezlotoxumab alone was significantly lower than
with the placebo, with similar rates of adverse reactions compared with the placebo [90]. It
also shows efficacy against the hypervirulent ribotype 027 [91]. A potential safety signal
was the occurrence of heart failure with bezlotoxumab, although the risk is low [90,92].
Currently, the conditional recommendation from the IDSA and SHEA is for co-intervention
with bezlotoxumab along with CDI-directed antibiotics in patients with rCDI episodes
within the past 6 months [89]. The use of bezlotoxumab is, however, limited by the high
cost and logistics.

In contrast to monoclonal antibody therapy, polyclonal antibody therapy is currently
still in development. Intravenous immunoglobulin (IVIG), with its use in numerous other
clinical conditions, has also been proposed for use in CDI. It has only been examined in
retrospective studies, often in the context of severe rCDI [93–95]. There are promising
studies that show specific binding and neutralizing antibodies to C. difficile antigens in
select IVIG preparations [96]. However, randomized studies are needed to demonstrate a
therapeutic effect.
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6.3. Fecal Microbiota Transplant (FMT)

During the last decade, FMT has emerged as an effective treatment to prevent CDI
recurrence. FMT involves the infusion of donor stool into the gastrointestinal tract of
recipients. The primary indication for FMT is three or more episodes of mild to moderate
CDI, or at least two episodes of CDI resulting in hospitalization or significant morbidity [97].
Several studies have shown that FMT is superior to oral vancomycin and fidaxomicin in
the setting of rCDI [98,99]. Recurrent CDI can occur in 20–25% of patients, with increasing
rates following each subsequent episode, up to 40–45% in patients after the second CDI
episode, and more than 65% after three or more CDI episodes [100–102]. A subset of
patients experience chronic relapsing CDI with multiple recurrences which is an ongoing
challenge [102]. From 2001 to 2012, there was a 189% increase in the annual incidence of
rCDI [4]. FMT has shown remarkable efficacy and safety in the treatment of rCDI. The
clinical efficacy after the initial FMT was 84% and rose to 91% after a repeat FMT in a pivotal
randomized controlled trial [103]. Early FMT was associated with reduced mortality rate in
an outbreak of ribotype 027 infections [104].

Despite these successes, there remain some concerns regarding the short-term safety
of FMT due to reported cases of bacteremia and death associated with donor-derived
pathogens [105,106]. Furthermore, the long-term follow-up registry study is still ongoing
and is required to further inform the safety profile data [107]. Additionally, while there
may be some differences in the clinical efficacy based on how FMT is delivered, whether
by enema, colonoscopy, nasogastric tube, or oral capsules, there are benefits and risks
associated with each route of delivery. Ultimately, the best option may have to be chosen
based on product availability, patient factors, and practitioner expertise.

6.4. Emerging Therapies

Due to the potential risks of FMT, there is a significant interest in the development of
safer, donor-independent defined microbial consortia for the modulation of gut microbiota
in CDI. VE-303 is a bacterial consortium comprised of eight strains of commensal Clostridia
in adults at high risk of rCDI. A recent phase II randomized control trial with 79 subjects
comparing high-dose VE303 with a placebo found that VE303 significantly reduced the
risk of rCDI by 32% relative to the placebo [108]. Another preparation, SER-109, is an oral
formulation developed by Seres Therapeutics that encompasses approximately 50 species
of Firmicutes spores derived from human stools, with subsequent inactivation of potential
pathogens, and recently received FDA approval in April 2023. Their phase III randomized
control trial with 182 participants had shown SER-109 to be superior to the placebo in
reducing the risk of rCDI by 28%, with a good safety profile [109]. Microbial Ecosystem
Therapeutic 2 (MET-2) is another oral formulation that consists of 40 lyophilised bacterial
species that were originally derived from a healthy donor, then synthesized independently
to eliminate the potential risks of donor-derived pathogens. MET-2 had been evaluated in a
phase I trial, which found MET-2 treatment prevented recurrent infection in 79% of adults
40 days after the initial treatment and had been safe and well-tolerated among individuals
with rCDI [110]. In the next decade, the infusion of select microbial consortia represents
an innovative treatment in patients with CDI. Given the cost implication of these novel
microbiota-based therapies, further price reduction would be necessary before they can be
implemented widely.

Emerging therapeutic targets to treat CDI are in development. Phage therapy is
an experimental treatment for CDI which involves the use of bacteriophages; viruses
selected to target and kill C. difficile bacteria. In preclinical studies, phage-based therapy has
shown promise in inhibiting spore outgrowth in vitro [111–118]. For instance, Mondal et al.
identified that recombinantly expressed cell wall hydrolase lysin from C. difficile phage
phiMMPo1 was active against C. difficile [113]. The potential advantage of phage therapy is
the ability to specifically target C. difficile bacteria without harming the beneficial bacteria
in the gut microbiome. This could potentially reduce the risk of rCDI. The challenges with
phage therapy include its stability in the gastrointestinal tract, the need to select and match
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phages to specific C. difficile strains, potential for phage resistance over time, and the need
for ongoing research to determine the optimal administration strategies [111–118]. There
are further promising pre-clinical data on emerging therapies in clinical trials which have
been reviewed elsewhere [117].

7. Conclusions

C. difficile remains a significant cause of HA infections and is increasingly being recog-
nized as a CA pathogen, with an increased incidence of rCDI in recent years. It is important
to understand C. difficile epidemiology in order to achieve ongoing coordinated surveil-
lance programs to aid in identifying cases, monitor trends, and detect potential reservoirs.
Implementation of standardized laboratory testing is also critical to accurately characterize
the nature of CDIs, especially in low- and middle-income countries. Further, preventing
CDIs involves ongoing antimicrobial stewardship, because even effective medications
such as vancomycin and fidaxomicin may lead to the development of resistance down the
line. The pathogenesis of CDI is characterized by microbial dysbiosis; hence, the field is
progressing towards microbial-based therapeutics such as FMT and donor-independent
microbial consortia. Ideally, as the potential risks associated with microbial therapies
decrease, along with increased cost-effectiveness, these treatments will be integrated earlier
in the treatment paradigm.

Table 2. A global comparison of prevalent ribotypes of C. difficile in different regions of the world.

Nation/Region Prevalent Strains Reference

United States Ribotypes 027, 106, 014/020,
002, 001

CDC 2020 [28], Lessa et al. [119], Kim
et al. [29], Guh et al. [30]

Canada Ribotypes 027, 106, 014/020 Katz et al. [13], Du et al. [13], Carlson
et al. [39]

Europe Ribotypes 014/020, 078, 027,
001 ECDPC 2022 [46], Freeman et al. [47]

Australia Ribotypes 014/020, 126,
078/126 Hong et al. [56], Putsathit et al. [58]

Asia Ribotypes 017, 018, 014/020,
001, 002, 010, 046, 126, 084 Collins et al. [81]

South America Ribotypes 027, 106, 012, 046,
014/020 Diniz et al. [64], Salazar et al. [120]
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